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Evolving three-dimensional cellular automata to perform
a quasiperiod-3 collective behavior task

Francisco Jime´nez-Morales
Departamento de Fı´sica de la Materia Condensada, Universidad de Sevilla, P. O. Box 1065, 41080-Sevilla, Spain

~Received 18 May 1999!

We present results from experiments in which a genetic algorithm~GA! is used to develop three-dimensional
cellular automata~CA! to perform a nontrivial collective behavior task. Under a fitness function that is defined
as an averaged area in the iterative map, the GA detects a CA rule with quasiperiod-3~QP3! collective
behavior and another with period-3. For rules with QP3 the time autocorrelation function decays as a power
law with an exponent of21/2, according to the predictions of the Kardar-Parisi-Zhang equation, and a
space-time diagram reveals the existence of propagating structures inside the system.
@S1063-651X~99!14910-9#

PACS number~s!: 02.70.2c, 82.20.Wt
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I. INTRODUCTION

In many natural systems, simple, locally interacting co
ponents give rise to coordinated global information proce
ing. In both natural and human-constructed informatio
processing systems, allowing global coordination to eme
from a decentralized collection of simple components
important potential advantages—e.g., speed, robustness
evolvability—as compared to explicit central control. How
ever, it is difficult to design a collection of individual com
ponents and their interaction in a way that will give rise
useful global information processing or ‘‘emergent compu
tion.’’ The term emergent computation refers to the appe
ance in a system’s temporal behavior of informatio
processing capabilities that are not explicitly represented
the system’s elementary components.

In order to understand the mechanisms by which an e
lutionary process can detect methods of emergent comp
tion, a simplified framework was proposed and studied
Crutchfield, Mitchell, and co-workers@1–4# in which a ge-
netic algorithm~GA! evolved one-dimensional cellular au
tomata ~CAs! to perform computations. In their work, th
GA was able to detect CAs with high performance on ta
requiring cooperative collective behavior. The density cl
sification task and the synchronization task are two exam
of emergent computation for small radius binary CA. A su
cessful CA for the classification task will determine wheth
or not the initial configuration contains more than half on
If it does, the whole lattice should eventually iterate to t
fixed-point configuration of all cells in state 1; otherwise,
should eventually iterate to the fixed-point configuration
all zeros. For the synchronization task a successful CA
reach a final configuration in which all cells oscillate b
tween all zeros and all ones on successive time steps.

A much more complex situation of emergent behavior
CAs is found ind53 with the appearance of nontrivial co
lective behavior~NTCB!. Since CAs are governed by loca
interactions and subjected to noise, it was expected that
global observable would show a trivial time dependence
the limit of infinite size@5#. But several exceptions to thi
have been found. The most remarkable one is quasiperi
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behavior~QP3! that exhibits the concentration of the rule-3
automaton ind53 @6# and other CAs in high space dimen
sions @7#. This behavior is neither transient nor due to t
finite size of the lattice and has been obtained for determ
istic and probabilistic rules@8#. At the moment there is no
answer to the question of how NTCB can be predicted fr
the local rule, nor to how we can design a CA with a spec
behavior.

In this paper we couple an evolutionary process—
GA—to a population of three-dimensional CAs. The surviv
of an individual CA is determined by its ability to perform
‘‘QP3 ~P3! task.’’

II. CELLULAR AUTOMATA

Cellular automata are regular lattices of variables, each
which can take a finite number of values~‘‘states’’! and each
of which evolves in discrete time steps according to a lo
rule that may be deterministic or probabilistic. Physic
chemical, and biological systems with many discrete e
ments with local interactions can be modeled using CAs. T
CAs studied here are three dimensional with two poss
states per cell~0 or 1! and with periodic boundary condi
tions. We denote the lattice size~i.e., number of cells! asN
5L3. A CA has a single fixed rulef used to update eac
cell; the rule maps from the states in a neighborhood of c
to a single statesi , j ,k(t), which is the updated value for th
cell at sitesi , j ,k in the neighborhood. The lattice starts o
with an initial configuration of states and this configurati
changes in discrete time steps. The neighborhood of a ce
positionsi , j ,k consists of the nearest neighbors ind53 ~the
Von Neumann neighborhood!, and it can be displayed~Table
I! as a string of seven bits. Note that the number of differ
neighborhood configurations is 275128.

The transition rulef can be expressed as a lookup tab
~a ‘‘rule table’’!, which lists for each local neighborhood th

TABLE I. A bit string representing the neighborhood of a ce
si , j ,k .

si , j ,k si 21,j ,k si 11,j ,k si , j 21,k si , j 11,k si , j ,k21 si , j ,k11
4934 © 1999 The American Physical Society
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PRE 60 4935EVOLVING THREE-DIMENSIONAL CELLULAR . . .
updated state of the neighborhood’s cell at positionsi , j ,k. A
rule is a bit string that consists of 128 bits, and then the ra
of rules under investigation is of 2128, which is too large for
a sequential search.

III. THE QP3 „P3… TASK

The global behavior of the CA is monitored through t
concentration of activated cells at timet, c(t)
5(1/n)( i , j ,k

n si , j ,k(t). According to the time series of th
concentration, the types of nontrivial collective behavior
ported are noisy period-1~P1!, period-2 ~P2!, intermittent
period-2 ~P2i!, period-3 ~P3!, and quasiperiod-3~QP3!.
These behaviors are represented by distinct clouds of po
in the iterative map, i.e., the plot ofc(t11) versusc(t). P1,
P2, and P3 correspond respectively to one, two, and th
clouds of points in the iterative map; P2i is period-2 behav
with a nonconstant amplitude of the oscillationuc(t11)
2c(t)u; in the iterative map it can be distinguished by o
cloud of points along a straight line. Finally, QP3 behav
corresponds to a triangular object. The NTCBs are chaoti
the sense of Wolfram’s class III; each site of the lattice f
lows a chaotic evolution which has no apparent relation
the global one. The global variablec(t) shows fluctuations
that decrease as the lattice size increases, leading to a
defined thermodynamic limit. The most interesting NTC
are P3 and QP3.

The goal in the ‘‘QP3~P3! task’’ is to find a CA that,
starting from a random initial configuration, reaches a fi
configuration in which the concentration oscillates amo
three different values, i.e., follows P3 or QP3 collective b
havior.

The QP3~P3! task counts as a nontrivial computation f
small-radius CA because the CAs depends on computat
for which memory requirements increases withL and in
which information must be transmitted over significa
space-time distances.

IV. DETAILS OF THE EXPERIMENTS

We used a genetic algorithm to evolve three-dimensio
binary state CAs to perform a QP3~P3! task. GAs are search
methods inspired by biological evolution. In a typical G
candidate solutions to a given problem are encoded as
strings ~‘‘chromosomes’’!. A population of such strings is
chosen at random and evolves over several generations u
selection, crossover, and mutation. At each generation,
fitness of each bit string is calculated according to some
ternally imposed fitness function, and the highest-fitness
strings are selected preferentially to be the ‘‘parents’’ w
form a new population via crossover and mutation. Un
crossover, pairs of parents exchange bits to form offspr
which are then subject to a small probability of mutation
each bit position. After several generations, the popula
often contains high-fitness bit strings representing hi
quality solutions to the given problem. The search mec
nism of a GA requires balancing two objectives: exploiti
the best solution and exploring the search space.

The GA that we used begins with a population ofP ran-
domly generated chromosomes listing the rule-table ou
bits in lexicographic order of neighborhood patterns. T
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fitness evaluation for each CA rule is carried out on a latt
of 103 cells starting from a random initial condition of con
centration 0.5. After a transient time ofN/2 we allow each
rule to run for a maximum number ofM iterations. The val-
ues of concentration are assembled in groups of four c
secutive values and the fitness functionF(f) is defined by

F~f!5
4

M (
i

M /4
1

2
abs@~c22c1!~c42c2!

2~c32c2!~c32c1!# i .

We have studied other fitness functions, such as the
annon information functionS52K( i

nf i log(fi) and a func-
tion of the range of concentration values, but the best res
are obtained withF(f). The rule’s fitnessF(f) is taken
from a geometrical point of view and it is an average area
the iterative map; see Fig. 1 for more details. In the iterat
map the area of a P2 behavior is very-small almost 0;

FIG. 2. Best fitness rule versus generation for three differ
runs. Lattice size is 103 cells. ~a! Run in which rulefa was found
at generation 188;~b! run in which rulefb was found at generation
518; ~c! run in which rulefc was found at generation 594. Th
rules of the initial population were selected randomly with 0<l
<1 in runs~a! and ~b!, while in run ~c! 0<l<0.5.

FIG. 1. The iterative map plots the concentration in timet11
versus the concentration in timet. We construct vectora5(c2

2c1 ,c32c2) and vectorb5(c32c1 ,c42c2). The fitness function
F(f) is defined as an average of the area in the iterative mapF

5(4/M )( i
M /41

2 ua3bu i .
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4936 PRE 60FRANCISCO JIMÉNEZ-MORALES
area of a noisy P1 and the area of an intermittent P2
higher than that of a P2 and, finally, QP3 and P3 behav
have the highest values.

In each generation,~i! F(f) is calculated for each rulef
in the population;~ii ! the population is ranked in order o
fitness;~iii ! a numberE of the highest-fitness~‘‘elite’’ ! rules
is copied without modification to the next generation;~iv! the
remainingP2E rules for the next generation are formed
single-point crossover between randomly chosen pairs
elite rules. The offspring from each crossover are each
tated with a probabilitym, where mutation consists of flip
ping a randomly chosen bit in a string. This defines o
generation of the GA; it is repeatedG times for one run of
the GA.

V. RESULTS

We performed more than 50 different runs of the GA w
the following parameters:M5N/25500; P520; E55; m
50.05; G5700 ~in some runs,G was set to 2000), eac
with a different random-number seed. The dynamics of th
typical runs are shown in Fig. 2, which plots the fittest ru
of each generation for three different runs~a!, ~b!, and ~c!.
Before the GA detects high-fitness rules, the fitness of
best CA rule increases by rapid jumps. Qualitatively, the r
in performance can be divided into several ‘‘epochs,’’ ea

FIG. 3. Lambda parameter versus the generation for three
ferent runs in which the following was detected.~a! rule fa ; ~b!
rule fb , and ~c! rule fc . As the GA evolves,l of the best rules
decreases.
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corresponding to the discovery of a new, significantly im
proved strategy. The best evolved rule in each run isfa ,
which shows P4 behavior,fb ~QP3! andfc ~P3!. In runs~a!
and ~b!, the rules of the initial population had a randoml
parameter in the range@0,1#, while in case~c! the selectedl
was in the range@0,0.5# (l is defined as the fraction o
nonzero output states in the rule table!.

Figure 3 shows thel parameter versus the generation f
runs ~a!, ~b!, and ~c!. For each run it is observed thatl is
decreasing as the GA is evolving. Table II shows the r
table in hexadecimal code, the type of nontrivial collecti
behavior, the fitness function, and the lambda paramete
the best evolved rules. Many of the CA rules that show
collective behavior map low values of concentration to hi
values and vice versa. These rules have a lookup tabl
which there is a balance between the regions of low and h
concentration values andl is around 0.5. Rules that show
QP3 or P3 behavior, such asfb andfc , have a much lower
value ofl. Figure 4 shows the fitness function versusl for
the three runs~a!, ~b!, and~c!. It has been suggested@9# that
there is a relationship between the ability of a CA rule
show complex behavior and thel parameter. The basic hy
pothesis was thatl correlates with computational capabilit
in that rules capable of complex computation must be or
most likely to be found near some critical valuelc . In our
experiments we have found that rules with the highest val

if-
FIG. 4. Fitness function versusl for runs ~a!, ~b!, and ~c!.

Lattice size is 103 cells. Rules with high fitness values are found f
0.1,l<0.2.
its are
TABLE II. Measured values ofF(f), the type of nontrivial collective behavior, and thel parameter for
different evolved rules:fa , fb , fc , and the rule-33 automaton. Lattice size is 103. To recover the 128-bit
string giving the output bits of the rule table, expand each hexadecimal digit to binary. The output b
then given in lexicographic order.

Symbol Rule table hexadecimal code NTCB F(f) l

fa b77f3839-bb50f61a-5773f461-0d104081 P4~P2! 0.022 0.484
fb 10000000-00080c22-00020c00-80864048 QP3 0.064 0.125
fc 1000008c-0008088c-0008808b-000d0bf1 P3 0.065 0.203
R33 10000008-00080886-00080886-08868621 QP3 0.053 0.164
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of F have al parameter in the range 0.1,l<0.2.
Usually, the GA does not detect rules with QP3 or

behavior, but does detect rules with intermittent P2 or w
P4 behavior such as the one shown in Fig. 2~a!. The iterative
map of the concentration for the fittest rule for different ge
erations in run~a! is shown in Fig. 5. In the initial genera
tions, the GA detects rules with noisy P1 behavior, and
concentration values are around 0.5. In generation 63 the
a jump in the fitness function as intermittent P2 behavio
found. Another important jump inF(f) is observed at gen
eration 132, when noisy P2 behavior is found. And finally,
generation 188, rulefa is detected. Rulefa shows P4 be-
havior, as can be seen clearly in Fig. 6. But in the iterat
map—Fig. 5—three clouds of points can be seen: the
mimics P3 and this is why the GA selects rules likefa .

FIG. 5. Iterative map of the concentration of the fittest rule
the generation:~a! 55; ~b! 63; ~c! 132; ~d! 188, the best rulefa .
Lattice size is 103 cells.

FIG. 6. Time series of the concentration corresponding to Fig
for the fittest rule in the generation:~a! 55; ~b! 63; ~c! 132; ~d! 188,
the best rulefa . Lattice size is 103 cells.
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When the lattice size increases, the P4 collective beha
changes to P2.

The iterative map of the concentration for the fittest ru
for different generations in run~b! is shown in Fig. 7. In the
initial generations, the GA detects rules with cloudy P1 b
havior. In generation 100 the cloudy P1 widens and a tri
gular object can be seen. The GA has detected a new
that improves the fitness significantly. Figures 7~c! and 7~d!
correspond to the fittest rule in generations 156 and
(fb), where a QP3 can be seen clearly. In the case of Q
as the lattice size increases the behavior is better define

To explain how the global coordination arises, it has be
suggested in@10# that rules exhibiting quasiperiodic collec
tive behavior are well described, at large scales, by

FIG. 8. QP3 collective behavior shown by rulefb , starting
from a random initial concentration of 0.5. Lattice size is 106. Tran-
sient discarded.~a! The iterative map.~b! The time series of the
concentration.~c! Log-log plot of the absolute value of the tim
autocorrelation function. The slope of the line is21/2.

5

FIG. 7. Iterative map of the concentration of the fittest rule
the generation:~a! 8; ~b! 100; ~c! 156; ~d! generation 518 (fb).
Lattice size is 103 cells.
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4938 PRE 60FRANCISCO JIMÉNEZ-MORALES
Kardar-Parisi-Zhang~KPZ! equation@11#. The local order
parameter has a spatial average,ct(x).5 f (vt), where
f (vt) is a periodic function. Local variations can be inco
porated by writingct(x)5 f @vt1F t(x)#, whereF is a fluc-
tuating ‘‘phase’’ field. Then in a large system the coheren
can only be maintained through the mutual coupling a
entrainment of the local phases. One of the consequenc
the KPZ equation for rules producing quasiperiod behavio
that the time autocorrelation function decreases asymp
cally like t2(d22)/2.

Figure 8 shows the iterative map, the time series of
concentration, and the time autocorrelation offb . The time
autocorrelation function is defined as

C~ to ,t !5
1

n (
i , j ,k

n

@si , j ,k~ to!si , j ,k~ t !2c~ to!c~ t !#.

The absolute value ofC(to ,t) on a log-log scale is shown
in Figure 8~c!. C(to ,t) oscillates in time and the envelope
the oscillation decays as a power law with an expon
'0.5, which is according to the prediction of the KPZ.

FIG. 9. Iterative map of the concentration of the fittest rule
the generation:~a! 10; ~b! 49; ~c! 98; ~d! 594 (fc). Lattice size is
103 cells.
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The best way for the GA to detect rules with QP3 or
collective behavior is to start out with an initial population
rules with 0<l<0.5, such as in run~c! of Fig. 2. The itera-
tive map of the concentration for the fittest rule for differe
generations is shown in Fig. 9. Table III shows seven anc
tors of the best evolved rulefc . In the initial generations the
GA detect rules with cloudy P1 behavior as in the previo
run ~b! and with a small fitnessF(f10)50.0006. The rule
table of f10 reveals that the rule maps the all zeros neig
borhood to 1. In generation 49 there is a big jump
F(f49)50.0101, and in the iterative map a triangular obje
can be seen. Rulef49 maps the all zeros neighborhood to
and neighborhoods with a small number of ones are map
to 0. This seems to be one of the main characteristics of
best rules~see Table II!.

Before generation 100, the GA has detected high-fitn
rules with QP3 collective behavior@F(f98)50.0317#. Rule
f98 maps more neighborhoods with low concentrations t
than rulef49. In generation 594 the GA detects a rulefc

@F(fc)50.066# that shows P3. Figure 10 shows the iterati
map, the time series of the concentration, and the time a
correlation offc for a lattice size of 106 cells. When the

FIG. 10. QP3 collective behavior shown by rulefc , starting
from a random initial concentration of 0.5. Lattice size is 106. Tran-
sient discarded.~a! The iterative map.~b! The time series of the
concentration.~c! Log-log plot of the absolute value of the tim
autocorrelation function. The slope of the line is21/2.
ss
TABLE III. CA chromosomes~look-up table output bits! given in hexadecimal code, value of the fitne
function andl for seven ancestors offc .

Generation Rule table hexadecimal code F(f) l

10 18004007-004a0868-82990002-420b6b60 0.0006 0.234
49 100008c6-004a0c0a-00088002-020b4be1 0.0101 0.219
98 1000008a-00080c0a-00088403-020b4be1 0.0317 0.203

200 10000088-0008080a-0008848b-000e0bf1 0.0487 0.195
300 10000086-0008080e-00088489-020a0bf1 0.0566 0.203
400 1000008c-00080888-0008808b-000d03f3 0.0632 0.195
550 1000008c-00080888-0008808b-000f0bf2 0.0645 0.203

594 (fc) 1000008c-0008088c-0008808b-000d0bf1 0.0659 0.203
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PRE 60 4939EVOLVING THREE-DIMENSIONAL CELLULAR . . .
lattice size increases, the P3 collective behavior change
QP3.

One successful approach to understanding the comp
tion performed by evolved CAs is to adopt the computatio
mechanics framework developed by Crutchfield and Han
for one-dimensional CAs. This framework describes the
trinsic computation embedded in the CA space-time confi
rations in terms of domains, particles, and particles inter
tions. Once a CA’s regular domains have been detec
nonlinear filters can be constructed to filter them out, leav
just the deviations from those regularities. The resulting
tered space-time diagram reveals the propagation of dom
walls. If these walls remain spatially localized over tim
they are called particles. Particles are one of the main me
nisms for carrying information over long space-time d
tances. Ind52 many difficulties arise when displaying th
space-time diagram@12#, and in d53 the difficulties are
greater because the space-time diagram is a four-dimens
surface. In order to grasp a picture of the space-time
gram, we take an approximation: the space is reducedL
cells of a given axisx, and the value of concentration in eac
point is an average over the concentration in a tw
dimensional layer perpendicular to thex axis. Figure 11
shows a space-time diagram of a layer-averaged conce
tion profile offc . Time goes downward and the value of th

FIG. 11. Space-time diagram of a layer-averaged concentra
profile for rule fc starting from a random initial concentration
Transient discarded. Each dot represents an average over the
centration in a two-dimensional layer perpendicular to thex axis
~white represents a concentration value for which 0<c,0.1 and
black for which 0.4<c,0.5). Time goes downward and 200 tim
steps are shown. Lattice size is 106.
to
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concentration sets the grayscale. Regular and synchron
regions that consist of alternating values of concentrati
and some other irregular ones, can be observed. After
homogeneous regions have been filtered in Fig. 12, so
propagating structures can be observed. However, a c
plete ‘‘computational mechanics’’ analysis of the evolv
rules CAs is left for future work.

VI. CONCLUSION

There is interest in developing scientific tools for unde
standing how spatially extended systems in nature perf
computations. Using CA, two nontrivial problems—dens
and synchronization—have demonstrated that high per
mance systems can be developed to solve both. In this p
we have implemented a GA for a more complex task such
the appearance of nontrivial collective behavior. Under
appropriate fitness function, the GA selects preferentia
rules with P3 and QP3 and the GA detects new CA rules
d53 that show QP3 behavior. The evolutionary process
provide answers to the question of how nontrivial collecti
motion can be predicted. In our experiments as the GA
evolvingl parameter of the fittest rules is decreasing and
best rules are clustered in the range 0.1,l<0.2. We provide
more numerical evidence that the time autocorrelation fu
tion of CA rules with QP3 decays with time as predicted
the Kardar-Parisi-Zhang equation and then the issue of h
global coordination arises in the system can be addresse
terms of the entrainment of a local phase. Finally with t
tools of the computational mechanics an averaged space-
diagram reveals propagating structures in the system.
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FIG. 12. Filtered space-time diagram corresponding to Fig.
Time goes downward~200 time steps are shown!. Lattice size is
106.
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@1# M. Mitchell, J.P. Crutchfield, and P.T. Hraber, Physica D75,
361 ~1994!.

@2# J.P. Crutchfield and M. Mitchell, Proc. Natl. Acad. Sci. US
92, 10 742~1995!.

@3# R. Das, M. Mitchell, and J.P. Crutchfield, inParallel Problem
Solving from Nature—PPSN III, edited by Y. Davidor, H.-P.
Schwefel, and R. Ma¨nner,Lecture Notes in Computer Scienc
Volume 866~Springer, Berlin, 1994!, pp. 344–353.

@4# R. Das, J.P. Crutchfield, M. Mitchell, and J.E. Hanson, inPro-
ceedings of the Sixth International Conference on Genetic
gorithms, edited by L.J. Eshelman~Morgan Kaufmann, San
Francisco, 1995!, pp. 336–343.

@5# C.H. Bennet, G. Grinstein, Yu. He. C. Jayaprakash, and
Mukamel, Phys. Rev. A41, 1932~1990!.
l-

.

@6# J. Hemmingsson, Physica A183, 225 ~1992!.
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