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Evolving three-dimensional cellular automata to perform
a quasiperiod-3 collective behavior task

Francisco Jimeez-Morales
Departamento de Bica de la Materia Condensada, Universidad de Sevilla, P. O. Box 1065, 41080-Sevilla, Spain
(Received 18 May 1999

We present results from experiments in which a genetic algori@®#) is used to develop three-dimensional
cellular automatdCA) to perform a nontrivial collective behavior task. Under a fitness function that is defined
as an averaged area in the iterative map, the GA detects a CA rule with quasipdfieB3collective
behavior and another with period-3. For rules with QP3 the time autocorrelation function decays as a power
law with an exponent of-1/2, according to the predictions of the Kardar-Parisi-Zhang equation, and a
space-time diagram reveals the existence of propagating structures inside the system.
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PACS numbd(s): 02.70—~c, 82.20.Wt

[. INTRODUCTION behavior(QP3 that exhibits the concentration of the rule-33
automaton ind=3 [6] and other CAs in high space dimen-
In many natural systems, simple, locally interacting com-sions[7]. This behavior is neither transient nor due to the
ponents give rise to coordinated global information processfinite size of the lattice and has been obtained for determin-
ing. In both natural and human-constructed information-istic and probabilistic rule§8]. At the moment there is no
processing systems, allowing global coordination to emerg@nswer to the question of how NTCB can be predicted from
from a decentralized collection of simple components haghe local rule, nor to how we can design a CA with a specific
important potential advantages—e.g., speed, robustness, aRghavior.

evolvability—as compared to explicit central control. How- _ N this paper we couple an evolutionary process—a
ever, it is difficult to design a collection of individual com- GA—t0 @ population of three-dimensional CAs. The survival

ponents and their interaction in a way that will give rise toOf an individual CA is determined by its ability to perform a

useful global information processing or “emergent computa- QP3 (P3 task.

tion.” The term emergent computation refers to the appear-
ance in a system’s temporal behavior of information- Il. CELLULAR AUTOMATA
processing capabilities that are not explicitly represented in

thel sys:jem ts ele?en:arydctcf)]mponer? ts._ by which which can take a finite number of valug¢'states”) and each
n order 1o understand thé mechanisms by Which an €Vogt \yich evolves in discrete time steps according to a local

lutionary process can detect methods of emergent compuUtd;ie that may be deterministic or probabilistic. Physical,
tion, a simplified framework was proposed and studied bychemical, and biological systems with many discrete ele-
Crutchfield, Mitchell, and co-workergl—4] in which a ge-  ments with local interactions can be modeled using CAs. The
netic algorithm(GA) evolved one-dimensional cellular au- cas studied here are three dimensional with two possible
tomata (CAs) to perform computat_lons. In their work, the states per cell0 or 1) and with periodic boundary condi-
GA was able to detect CAs with high performance on tasksjons. We denote the lattice sizee., number of cellsasN
requiring cooperative collective behavior. The density clas—=|.3, A CA has a single fixed rule) used to update each
sification task and the synchronization task are two examplegell; the rule maps from the states in a neighborhood of cells
of emergent computation for small radius binary CA. A suc-to a single states; ; (t), which is the updated value for the
cessful CA for the classification task will determine whetherce|| at sitesi, j,k in the neighborhood. The lattice starts out
or not the initial configuration contains more than half onesyith an initial configuration of states and this configuration
If it does, the whole lattice should eventually iterate to thechanges in discrete time steps. The neighborhood of a cell at
fixed-point configuration of all cells in state 1; otherwise, it positionsi, j,k consists of the nearest neighborgdin 3 (the
should eventually iterate to the fixed-point configuration of\/on Neumann neighborhodand it can be displaye@able
all zeros. For the synchronization task a successful CA wilh) as a string of seven bits. Note that the number of different
reach a final configuration in which all cells oscillate be- neighborhood configurations is' 2 128.

A much more complex situation of emergent behavior in(a “ryle table”), which lists for each local neighborhood the
CAs is found ind= 3 with the appearance of nontrivial col-
lective behavio(NTCB). Since CAs are governed by local  tagLE |. A bit string representing the neighborhood of a cell
interactions and subjected to noise, it was expected that any ., .
global observable would show a trivial time dependence in J
the limit of infinite size[5]. But several exceptions to this g ik
have been found. The most remarkable one is quasiperiod-3

Cellular automata are regular lattices of variables, each of

Si—1jk  Si+1jk Sij-1k Sij+1k  Sijk-1  Sijk+1
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updated state of the neighborhood’s cell at positighk. A
rule is a bit string that consists of 128 bits, and then the range
of rules under investigation is of'2® which is too large for

a sequential search.
C 41

Ill. THE QP3 (P3) TASK

The global behavior of the CA is monitored through the
concentration of activated cells at time, c(t)
=(1/n)2{‘,j,ksi,j,k(t). According to the time series of the
concentration, the types of nontrivial collective behavior re- Ct

ported are noisy period-1P1), period-2 (P2), intermittent N o
period-2 (P2j), period-3 (P3, and quasiperiod-3QP3. FIG. 1. The iterative map plots the concentration in titrel
. .. . versus the concentration in time We construct vectoa:(c2
These behaviors are represented by distinct clouds of points B , .
~c4,C3—Cy) and vectoh=(c3—c4,C,—C,). The fitness function

in the iterative map, i.., the pIot_o’(H— 1) versusc(t). P1, F(¢) is defined as an average of the area in the iterative fRap,
P2, and P3 correspond respectively to one, two, and three AMYSMAL ax b
clouds of points in the iterative map; P2i is period-2 behavior— (4M)Zi 2/axbl;.
Vi”gztﬁ ) rllr? Tﬁgr}:?gttivgmn? g;ugec :; ;Zedg?iﬂgitiﬁ?é; bt)oneﬂtness evaluation for each CA rule is carried out on a lattice
cloud of points along a straight line. Finally, QP3 behaviorOfe r:ILt?:\ t(izgrl:Soséar,g?tgerfg)?a?\sr?enn(ﬁ?nIemgf?lz (i/f/)gdalltlig\r/]vcgacc%n-
corresponds to a triangular object. The NTCBs are chaotic i'ﬁule to run f(.)r.a maximum number of iterations. The val-
the sense of Wolfram’s class IlI; each site of the lattice foI-ues of concentration are assembled in arou s of four con-
lows a chaotic evolution which has no apparent relation to tive val nd the fitn functie 9 i g fined b
the global one. The global variabt£t) shows fluctuations secutive values a e fitness functié(yp) is defined by
that decrease as the lattice size increases, leading to a well 4 M4
defirILe?’d thgrgw'(:)gynamic limit. The most interesting NTCBs F(¢p)= v zl Eab$(C2_C1)(C4_C2)
are P3 an .

The goal in the “QP3(P3 task” is to find a CA that, (Ca—Cy)(Ca—Cp)];
starting from a random initial configuration, reaches a final 8 FARs MU
configuration in which the concentration oscillates among \ye have studied other fitness functions. such as the Sh-
three different values, i.e., follows P3 or QP3 collective be-;nn0n information functiorS= — K="f, log(f;) and a func-

havior. o . tion of the range of concentration values, but the best results
The QES(P3) task counts as a nontrivial computation fqr are obtained withF (). The rule’s fitnessE(4) is taken

fsmall—r:_a?]lus CA becausg the CAs'depends onu(r:]omdpqtatlor}%m a geometrical point of view and it is an average area in

or which memory requirements increases withand I e jierative map; see Fig. 1 for more details. In the iterative

which information must be transmitted over S|gn|f|cantmap the area of a P2 behavior is very-small almost 0; the
space-time distances.

0.08

IV. DETAILS OF THE EXPERIMENTS

We used a genetic algorithm to evolve three-dimensional,
binary state CAs to perform a QRB3J) task. GAs are search o061
methods inspired by biological evolution. In a typical GA,

candidate solutions to a given problem are encoded as bi
strings (“‘chromosomes’). A population of such strings is ¢

chosen at random and evolves over several generations undg %% |
selection, crossover, and mutation. At each generation, th¢®
fitness of each bit string is calculated according to some ex- 5
ternally imposed fithess function, and the highest-fitness bit e s
strings are selected preferentially to be the “parents” who %%

form a new population via crossover and mutation. Under .
crossover, pairs of parents exchange bits to form offspring, I '
which are then subject to a small probability of mutation at et ‘ ‘
each bit position. After several generations, the population 0 200 400 600
often contains high-fitness bit strings representing high- Generation

quality solutions to the given problem. The search mecha- [iG, 2. Best fitness rule versus generation for three different
nism of a GA requires balancing two objectives: exploiting ryns. Lattice size is Tocells. (@) Run in which rule¢, was found
the best solution and exploring the search space. at generation 188b) run in which rule¢, was found at generation

The GA that we used begins with a populationRofan-  518; (c) run in which rule ¢, was found at generation 594. The
domly generated chromosomes listing the rule-table outpuiules of the initial population were selected randomly witk 0
bits in lexicographic order of neighborhood patterns. The<1 in runs(a) and(b), while in run(c) 0<\<0.5.
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. _ FIG. 4. Fitness function versus for runs (a), (b), and (c).
FIG. 3. Lambda parameter versus the generation for three diff aytice size is 18cells. Rules with high fitness values are found for
ferent runs in which the following was detectdd) rule ¢,; () g 1<)<0.2.
rule ¢, and(c) rule ¢.. As the GA evolves) of the best rules
decreases.

area of a noisy P1 and the area of an intermittent P2 argorresponding to the discovery of a new, significantly im-
higher than that of a P2 and, finally, QP3 and P3 behaviorfroved strategy. The best evolved rule in each rurpjs
have the highest values. which shows P4 behaviot), (QP3 and ¢, (P3. In runs(a)
In each generatior(j) F(¢) is calculated for each rule and (b), the rules of the initial population had a random
in the populationii) the population is ranked in order of parameter in the rand®,1], while in case(c) the selected
fitness;(iii ) a numbelE of the highest-fitnesé'elite” ) rules ~ was in the rangd0,0.5] (\ is defined as the fraction of
is copied without modification to the next generatitm) the ~ nonzero output states in the rule table
remainingP — E rules for the next generation are formed by  Figure 3 shows tha parameter versus the generation for
single-point crossover between randomly chosen pairs ofuns(a), (b), and(c). For each run it is observed thatis
elite rules. The offspring from each crossover are each mudecreasing as the GA is evolving. Table Il shows the rule
tated with a probabilitym, where mutation consists of flip- table in hexadecimal code, the type of nontrivial collective
ping a randomly chosen bit in a string. This defines onéoehavior, the fitness function, and the lambda parameter of
generation of the GA; it is repeate® times for one run of the best evolved rules. Many of the CA rules that show P2
the GA. collective behavior map low values of concentration to high
values and vice versa. These rules have a lookup table in
which there is a balance between the regions of low and high
concentration values and is around 0.5. Rules that show
We performed more than 50 different runs of the GA with QP3 or P3 behavior, such &g and ¢., have a much lower
the following parametersM =N/2=500; P=20; E=5; m  value of\. Figure 4 shows the fitness function versugor
=0.05; G=700 (in some runsG was set to 2000), each the three runga), (b), and(c). It has been suggestédl] that
with a different random-number seed. The dynamics of thre¢here is a relationship between the ability of a CA rule to
typical runs are shown in Fig. 2, which plots the fittest ruleshow complex behavior and theparameter. The basic hy-
of each generation for three different ru, (b), and(c).  pothesis was that correlates with computational capability
Before the GA detects high-fithess rules, the fitness of thén that rules capable of complex computation must be or are
best CA rule increases by rapid jumps. Qualitatively, the risamost likely to be found near some critical valhg. In our
in performance can be divided into several “epochs,” eachexperiments we have found that rules with the highest values

V. RESULTS

TABLE Il. Measured values of (¢), the type of nontrivial collective behavior, and theparameter for
different evolved rules®, , ¢,, ¢., and the rule-33 automaton. Lattice size i$.10o recover the 128-bit
string giving the output bits of the rule table, expand each hexadecimal digit to binary. The output bits are
then given in lexicographic order.

Symbol Rule table hexadecimal code NTCB F(¢) N
ba b77f3839-bb50f61a-5773f461-0d104081 (P23 0.022 0.484
bp 10000000-00080c22-00020c00-80864048 QP3 0.064 0.125
be 1000008¢-0008088c-0008808b-000d0bf1 P3 0.065 0.203

Ra3 10000008-00080886-00080886-08868621 QP3 0.053 0.164
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FIG. 5. Iterative map of the concentration of the fittest rule in ~ FIG. 7. lterative map of the concentration of the fittest rule in
the generation(a) 55; (b) 63; (c) 132; (d) 188, the best rulgp, . the generation(a) 8; (b) 100; (c) 156; (d) generation 518 ¢y,).
Lattice size is 18 cells. Lattice size is 19 cells.

of F have ax parameter in the range <\ <0.2. When the lattice size increases, the P4 collective behavior

Usually, the GA does not detect rules with QP3 or p3changes to P2. _ ,
behavior, but does detect rules with intermittent P2 or with, 1h€ iterative map of the concentration for the fittest rule
P4 behavior such as the one shown in Fi@) ZThe iterative fo_r_d|fferent generations in rufb) is shown in Fig. 7. In the
map of the concentration for the fittest rule for different gen-'n't"'?II generations, the GA detects rules W.'th cloudy P1 _be-
erations in run(a) is shown in Fig. 5. In the initial genera- havior. ”.] generation 100 the cloudy P1 widens and a trian-
tions, the GA detects rules with noisy P1 behavior, and thjghular. object carr: bfg seen. .Th.?. GAIhals:.detect;ad 3 ngw rule
concentration values are around 0.5. In generation 63 there sat Improves the '"FeSS signi |_cant Y- |g_ure{s) and 1d)

a jump in the fitness function as intermittent P2 behavior iscorrespond to the fittest rule in generations 156 and 518
found. Another important jump iRk (¢) is observed at gen- COR whe_re a QP3 can be seen clearly. In the case O.f QP3,
eration 132, when noisy P2 behavior is found. And finally, inas the lattice size increases the behavior is better defined.

generation 188, ruleb, is detected. Rulep, shows P4 be- To explain how the global coordination arises, it has been

havior, as can be seen clearly in Fig. 6. But in the iteratives.nggeSteOl 1110] that rules exhibiting quasiperiodic collec-

map—Fig. 5—three clouds of points can be seen: the Pl‘!ve behavior are well described, at large scales, by the
mimics P3 and this is why the GA selects rules likg.
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. . FIG. 8. QP3 collective behavior shown by rutk,, starting

from a random initial concentration of 0.5. Lattice size i§.I0ran-
FIG. 6. Time series of the concentration corresponding to Fig. Ssient discarded(a) The iterative map(b) The time series of the
for the fittest rule in the generatiofa) 55; (b) 63; (c) 132;(d) 188, concentration(c) Log-log plot of the absolute value of the time
the best rulep, . Lattice size is 1®cells. autocorrelation function. The slope of the line-isl/2.
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FIG. 9. lterative map of the concentration of the fittest rule in G. 10. Q .3. coflective be 1avior sho l.)y uﬁ% starting
from a random initial concentration of 0.5. Lattice size i§.I0ran-

the generation(@) 10; (b) 49; (¢) 98; (d) 594 (4). Lattice size is sient discarded(a) The iterative map(b) The time series of the

10° cells. ) :
concentration(c) Log-log plot of the absolute value of the time
autocorrelation function. The slope of the line-isl/2.

Kardar-Parisi-ZhandKPZ) equation[11]. The local order

barame ter ha§ a spatla_l average:t(x)_>_= flwt), wh(_are The best way for the GA to detect rules with QP3 or P3
f(wt) is a periodic function. Local variations can be incor- . L : e .
o o . collective behavior is to start out with an initial population of
porated by writingc(X) = fl wt+ ®(x) ], whered is a fluc- . : . )
N o . rules with 0<\=<0.5, such as in rurc) of Fig. 2. The itera-
tuating “phase” field. Then in a large system the coherence. ; X )

L . ive map of the concentration for the fittest rule for different
can only be maintained through the mutual coupling an nerations is shown in Fig. 9. Table Ill shows seven ances-
entrainment of the local phases. One of the consequences %ﬁs of the best evolved rulg' in the initial generations the
the KPZ equation for rules producing quasiperiod behavior i%A detect rules with cloud / .Pl behavior ;gs in the previous
that the time autocorrelation function decreases asymptoti- ; Y a P
cally like t~(0-2)2 run (b) and with a small fithes& (¢, =0.0006. The rule_:

Figure 8 shows the iterative map, the time series of th Ei)brfogg(btloo rivelils ?ﬁégﬁ);ngmtizfethii 2' E?roi :]elgif:]—
concentration, and the time autocorrelationdgf. The time - _0010'1 n% in the iterative m trian gIJr g i
autocorrelation function is defined as (a9 =0. & € lterative map a trianguiar objec

can be seen. Rulé,9 maps the all zeros neighborhood to 1
and neighborhoods with a small number of ones are mapped
to 0. This seems to be one of the main characteristics of the
best ruleg(see Table I\

Before generation 100, the GA has detected high-fitness
rules with QP3 collective behavidF ( ¢g¢g) =0.0317. Rule
$gg maps more neighborhoods with low concentrations to 0

The absolute value dE(t,,t) on a log-log scale is shown than rule¢,q. In generation 594 the GA detects a rupe
in Figure &c). C(t,,t) oscillates in time and the envelope of [F(¢.)=0.066 that shows P3. Figure 10 shows the iterative
the oscillation decays as a power law with an exponenmap, the time series of the concentration, and the time auto-
~0.5, which is according to the prediction of the KPZ. correlation of ¢, for a lattice size of 19 cells. When the

n

1
Clto, )= 2 [51,(to)S;j k(1) ~Clto)c(t)].

ik

TABLE lIl. CA chromosomeglook-up table output bisgiven in hexadecimal code, value of the fitness
function and\ for seven ancestors @ .

Generation Rule table hexadecimal code F(¢) A
10 18004007-004a0868-82990002-420b6b60 0.0006 0.234
49 100008c6-004a0c0a-00088002-020b4bel 0.0101 0.219
98 1000008a-00080c0a-00088403-020b4bel 0.0317 0.203
200 10000088-0008080a-0008848b-000e0bf1 0.0487 0.195
300 10000086-0008080e-00088489-020a0bfl 0.0566 0.203
400 1000008c¢-00080888-0008808b-000d03f3 0.0632 0.195
550 1000008c-00080888-0008808b-000f0bf2 0.0645 0.203
594 (¢.) 1000008¢-0008088c-0008808b-000d0bf1 0.0659 0.203




PRE 60 EVOLVING THREE-DIMENSIONAL CELLULAR. .. 4939

— - -— -
-— - -y -
- —— = —— -
- - - ————. =ar
P - m e em - —y— -
" g e me g TR e e
— P o = o P A el |
- - E = me— --ha =
—_— — I Tl B hm = =™ = =
— T p—— = = RAAF
— o ——E—— WE W oEE R mEmEm - - -—-
AN e——— & = o= w - -
s T -
- -
= —y— -
- — L9 —am
- - - W B W
] o - L] ]
= -- - = r
r o= - . -= u - -
TR — —t -
v =" e — -
e B -
- - = - -
e - — -— - -——-
— — S -— - -
- —— g — =
- ——-_. B - == -
-- ——— L o e e— g
— - " e ==
—— == = e m——_ P
o = [ -
- - -—k -
| I it | - -
1 - = — -
- -

FIG. 12. Filtered space-time diagram corresponding to Fig. 11.
Time goes downward200 time steps are showrlLattice size is

10°.

concentration sets the grayscale. Regular and synchronized
—— - regions that consist of alternating values of concentration,
and some other irregular ones, can be observed. After the
FIG. 11. Space-time diagram of a layer-averaged concentratiohomogeneous regions have been filtered in Fig. 12, some
profile for rule ¢, starting from a random initial concentration. propagating structures can be observed. However, a com-
Transient discarded. Each dot represents an average over the cqplete “computational mechanics” analysis of the evolved
centration in a two-dimensional layer perpendicular to thaxis  rules CAs is left for future work.
(white represents a concentration value for whichd<0.1 and
black for which 0.4<c<<0.5). Time goes downward and 200 time
steps are shown. Lattice size is®10 VI. CONCLUSION

There is interest in developing scientific tools for under-
lattice size increases, the P3 collective behavior changes gandlng .hOW spa_tlally extended systems in nature perfprm
QP3 computations. Using CA, two nontrivial problems—density

' . nd synchronization—have demonstrated that high perfor-
One successful approach to understanding the computﬁj .
. ; . ance systems can be developed to solve both. In this paper
tion perfprmed by evolved CAs is to adopt the computationaf,e e implemented a GA for a more complex task such as
mechanics framework developed by Crutchfield and Hanso

f d . | his f K d " he | e appearance of nontrivial collective behavior. Under an
or one-dimensional CAs. This framework describes the inynhopriate fitness function, the GA selects preferentially
trinsic computation embedded in the CA space-time configuyjes with P3 and QP3 and the GA detects new CA rules in

rations in terms of domains, particles, and particles interacy—3 that show QP3 behavior. The evolutionary process can
tions. Once a CA's regular domains have been detectegroyide answers to the question of how nontrivial collective
nonlinear filters can be constructed to filter them out, leavingnotion can be predicted. In our experiments as the GA is
just the deviations from those regularities. The resulting fil-evolving\ parameter of the fittest rules is decreasing and the
tered space-time diagram reveals the propagation of domaifest rules are clustered in the range<ON<0.2. We provide
walls. If these walls remain spatially localized over time, more numerical evidence that the time autocorrelation func-
they are called particles. Particles are one of the main mechaion of CA rules with QP3 decays with time as predicted by
nisms for carrying information over long space-time dis-the Kardar-Parisi-Zhang equation and then the issue of how
tances. Ind=2 many difficulties arise when displaying the global coordination arises in the system can be addressed in
space-time diagranil2], and in d=3 the difficulties are terms of the entrainment of a local phase. Finally with the
greater because the space-time diagram is a four-dimensiorf@ols of the computational mechanics an averaged space-time
surface. In order to grasp a picture of the space-time diadiagram reveals propagating structures in the system.

gram, we take an approximation: the space is reducdd to

cells of a given axix, and the value of concentration in each

point is an average over the concentration in a two- ACKNOWLEDGMENTS
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